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1 Introduction to Cosmology - David Albandea

References - Disclaimer

The notes of this section are essentially a summary of chapters 2 and 3 of
Baumann’s Cosmology, from which I took the notation, most of the reason-
ings (some of them literally) and some images. Dodelson’s Modern cosmology
was also used.

1.1 History of the Universe

Event temperature energy time
Inflation < 1028 K (?) < 1016 GeV (?) > 10−34 s (?)
Dark matter decouples ? ? ?
Baryogenesis ? ? ?
EW phase transition 1015 K 100 GeV 10−11 s
Hadrons form (QCD PT) 1012 K 150 MeV 10−5 s
Neutrinos decouple 1010 K 1 MeV 1 s
Nuclei form (BBN) 109 K 100 keV 200 s
Atoms form 3400 K 0.30 eV 260 000 yrs
Photons decouple (CMB) 2900 K 0.25 eV 380 000 yrs
First stars 50 K 4 meV 100 million yrs
First galaxies 20 K 1.7 meV 1 billion yrs
Dark energy dominates 3.8 K 0.33 meV 9 billion yrs
Einstein born 2.7 K 0.24 meV 13.8 billion yrs

Above we have a list of important events in the history of the universe.
Some of them are already facts (BBN, recombination, CMB), and others are
extrapolations made with extremely high confidence (EW and QCD phase
transitions). Some others like dark matter production we know must have
occurred, but their details are not very known.

We want to build the formalism to describe all of these processes in an
expanding universe.
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1.2 The expanding universe

1.2.1 Geometry

1. FLRW metric

The geometry of the universe is characterized by the spacetime metric.
In Minkowski space we have the line element

ds2 = −c2dt2 + δijdx
idxj (1)

and therefore the metric is

gµν = diag(−1, 1, 1, 1). (2)

However, in GR the metric generally depends on the position in space-
time, gµν(t, ~x), so the curvature of spacetime is nontrivial. This curva-
ture incorporates the effects of gravity.

From measurements like the CMB we know that the universe is ho-
mogeneous and isotropic, so it can be represented by a time-ordered
sequence of three-dimensional spatial slices Σt, so the four-dimensional
line element can be written as

ds2 = −c2dt2 + a2(t)dl2 (3)

with dl2 ≡ γij(x
k)dxidxj the line element on Σt and a(t) the scale

factor, which describes the expansion of the universe. This defines the
metric gµν = (−1, a2γij).

The fact that we have homogeneity and isotropy leaves us with 3 possi-
bilities for the curvature of the spatial slices Σt: it can be zero, positive
or negative.

• Flat space, with line element dl2 = d~x2 = δijdx
idxj .

• Spherical space, with dl2 = d~x2 + du2 and ~x2 + u2 = R2
0.

• Hyperbolic space, with dl2 = d~x2 − du2 and ~x2 − u2 = −R2
0.

All cases can be compactly written as

dl2 = d~x2 + k
(~x · d~x)2

R2
0 − k~x2

, for k ≡


0 E3

+1 S3

−1 H3

(4)
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with E, S and H for Euclidean, Spherical and Hyperbolic spaces, re-
spectively. Going to spherical coordinates the line element becomes

dl2 =
dr2

1− kr2/R2
0

+ r2dΩ2, dΩ2 ≡ dθ2 + sin2 θ dφ2 (5)

Substituting this into Eq. 3 we get the Friedmann-Robertson-
Walker (FRW) metric in polar coordinates,

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2/R2
0

+ r2dΩ2

]
(6)

Note that:

• The only independent components of the spacetime metric gµν
are the scale factor a(t) and the curvature scale R0.

• The coordinate r is called a comoving coordinate, which is not
a physical observable. The physical coordinate is rphys = a(t)r,
that is, r in units of the scale factor a(t).

• The line element ds2 has a rescaling symmetry under which space-
time stays the same

a→ λa, r → r/λ, R0 → R0/λ (7)

so one uses this freedom to set the scale factor today, t = t0, to be
unity, a(t0) ≡ 1. Then R0 is the physical curvature scale today.

2. The Hubble Parameter

A galaxy with a trajectory ~r(t) in comoving coordinates and ~rphys =
a(t)~r has physical velocity

~vphys ≡
d~rphys

dt
=
ȧ

a
~rphys + a(t)

d~r

dt
≡ H~rphys + ~vpec (8)
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with ~vpec = a(t)d~r/dt the peculiar velocity (a velocity in units of the
scale factor, i.e. a velocity measured by a comoving observer who
follows the Hubble flow H~rphys); and H the Hubble parameter

H ≡ ȧ

a
(9)

Note that:

• If ȧ = 0 (universe does not expand) then the velocity of the object
is just ~vpec = a(t)d~r/dt.

• If ȧ 6= 0 then H 6= 0 and the term H~rphys contributes. Note that
H has units of [T−1], so H~rphys is a velocity: it is the velocity at
which space itself is expanding at ~rphys.

1.2.2 Kinematics

We would like to know how free particles evolve in the FLRW metric. Free
massive particles in curved spacetime follow geodesics, which is the timelike
curve xµ(τ) which extremizes the action, and this extremal path satisfies

dxµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
, with Γµαβ ≡

1

2
gµλ(∂αgβλ + ∂βgαλ − ∂λgαβ)

(10)

Γµαβ are the so-called Christoffel symbols. In terms of the momentum Pµ ≡
mdxµ

dτ , we can rewrite the geodesic equation as

Pα
(
∂αP

µ + ΓµαβP
β
)

= 0 ⇐⇒ Pα∇αPµ = 0 (11)

where the quantity in brackets is the so-called covariant derivative of
the four-vector Pµ. In general in curved spacetime, derivatives need to be
generalized to covariant derivatives,

∂αA
µ → ∇αAµ ≡ ∂αAµ + ΓµαβA

β (12)

Note that the Christoffel symbols can be computed given a metric, so one
can evaluate them for the FLRW metric in 6, gµν = (−1, a2γij). Considering
the µ = 0 component of eq. 11 one finds

E

c3

dE

dt
= −1

c
aȧγijP

iP j (13)
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For a massless particle with gµνP
µP ν = −c−2E2 + a2γijP

iP j = 0 this
implies

1

E

dE

dt
= − ȧ

a
⇐⇒ E ∝ a−1 (14)

which indicates that the wavelength of radiation gets redshifted over time
due to the expansion of the universe.

Analogously, for a massive particle with gµνP
µP ν = −m2c2 one finds

that the physical peculiar three-momentum p2 ≡ gijP iP j scales as p ∝ a−1,
meaning that freely-falling particles eventually converge onto the Hubble
flow (see eq. 8).

1.2.3 Dynamics

We would like to know how the expansion of the universe evolves as a function
of time. This is given by the scale factor a(t) and its evolution can be
obtained from the Einstein equation

Gµν =
8πG

c4
Tµν , (15)

with Gµν the Einstein tensor (a measure of the “spacetime curvature” of the
universe) and Tµν the momentum tensor (a measure of the “matter content”
of the universe). We need to determine both to solve for the evolution of
a(t) as a function of the matter content.

The Einstein tensor depends on the Christoffel symbols and can be com-
puted for a given metric,

Gµν = Rµν −
1

2
Rgµν (16)

with Rµν the Ricci tensor and R = Rµµ. The Ricci tensor is defined as

Rµν ≡ ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
µν − ΓρµλΓλνρ . (17)

On the other hand, the energy-momentum tensor is required to be a
perfect fluid to be consistent with the universe being homogeneous and
isotropic. The physical meaning of the components are

Tµν =

(
T00 T0j

Ti0 Tij

)
=

(
energy density momentum density
energy flux stress tensor

)
(18)
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Isotropy implies that the off-diagonal elements must vanish, and homogeneity
implies that the pressure must be the same in all directions, so we have

Tµν = gµλTλν =


−ρc2 0 0 0

0 P 0 0
0 0 P 0
0 0 0 P

 (19)

where the energy density ρ(t) and the preassure P (t) are functions of time.
For a general observer

Tµν =

(
ρ+

P

c2

)
UµUν + Pgµν (20)

where Uµ ≡ dxµ/dτ is the four-velocity between the particles and the ob-
server.

1. Continuity equation

We want to know how the density and pressure evolve with time. As
a simpler example, the number density Nµ in Minkowski space needs
to satisfy the continuity equation

∂0N
0 = −∂iN i ⇐⇒ ∂µN

µ = 0 (21)

which means that, if the number of particles is conserved, the rate of
change of the number density N0 must equal the divergence of the flux
of the particles N i. In curved spacetime the equation is generalized
with the covariant derivative

∇µNµ = 0 (22)

Analogously, the continuity equation for the energy density, ρ̇ = −∂iπi,
and the Euler equation for the evolution of the momentum density,
π̇i = ∂iP , are combined into a four-component conservation equation
for the energy-momentum tensor,

∇µTµν = 0 (23)

Using the FLRW metric and eq. 20 in eq. 23 for the ν = 0 component
one gets the evolution of the energy density,

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0 , (24)
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which describes the “energy conservation” in the cosmological context.
Since the usual notion of energy conservation in flat space relies on
a symmetry under time translations and we don’t have that due to
the expanding space, the standard notion of energy conservation is
replaced by this equation.

Most cosmological fluids can be parametrized in terms of a constant
equation of state relating pressure and density,

P = w ρc2 (25)

with w a constant. Plugging this back into eq. 24 one finds how the
energy density dilutes with the scaling factor a(t),

ρ̇

ρ
= −3(1 + w)

ȧ

a
=⇒ ρ ∝ a−3(1+w) (26)

2. Matter, radiation and dark energy

The dilution of the energy density of eq. 26 depends on w, which
depends on the kind of fluid we are studying.

• Matter is a fluid whose pressure is much smaller than its energy
density, |P | � ρc2, which means w = 0. From eq. 26 this implies
that the energy density scales as

ρm ∝ a−3 (27)

That is, the energy in a region stays constant, but the region of
space increases as V ∝ a3. Examples of matter are baryons and
dark matter.

• Radiation is anything for which the pressure is one third of the
energy density, P = 1

3ρc
2, so that w = 1/3. This implies

ρr ∝ a−4, (28)

which includes the space expansion, V ∝ a3, and the redshifting
of the energy of the particles that we found in eq. 14, E ∝ a−1.
Examples of radiation are light particles, photons and neutrinos.

• The universe today is dominated by a mysterious form of dark
energy with negative pressure, P = −ρc2, and hence w = −1.
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This means the the energy density remains constant with the
expansion of the universe

ρ ∝ a0 (29)

Since energy density doesn’t dilute, energy has to be created as
the universe expands; but this doesn’t violate the conservation of
energy as long as the continuity equation in 24 is satisfied. This
dark energy could be accounted for if we added a cosmological
constant to the Einstein equation that does not change the con-
servation of the energy-momentum tensor ∇µTµν = 0, that is,

Gµν + Λgµν =
8πG

c4
Tµν . (30)

The different scalings of the energy density depending on the kind
of fluid indicates that in the past there were eras in which only one
component dominated, as seen in the figure below.

This fact can simplify the study of a particular era, since then only the
dominant fluid has to be considered for the evolution of a(t).

3. Friedmann equations
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Now we can evaluate the Einstein equation 15. The µ = 0, ν = 0
component yields the Friedmann equation, which is the fundamental
equation describing the evolution of the scale factor,(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2R2
0

⇔ H2 =
8πG

3
ρ− kc2

a2R2
0

(31)

where ρ should be understood as the sum of all contributions to the
energy density in the universe.

To write the Friedmann equation as a closed form equation for a(t) we
have to specify the evolution of the density, ρ(a), as in the continuity
equation, eq. 26.

It is common to rewrite the Friedmann equation as a function of relative
densities with respect to the critical density

ρcrit,0 =
3H2

0

8πG
(32)

which is the density needed to have a flat universe with k = 0. The
subcript “0” means today, at t = t0. The relative densities are then
defined as

Ωi,0 ≡
ρi,0
ρcrit,0

, i = r,m,Λ . . . (33)

with r for radiation, m for matter, Λ for the cosmological constant.
The subscript “0” is usually dropped. The Friedmann equation, eq.
31, can be then rewritten as

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ (34)

with the curvature “density” parameter Ωk ≡ −kc2/(R0H0). At t = t0
this yields

1 = Ωr + Ωm + ΩΛ + Ωk ≡ Ω0 + Ωk (35)

with Ω0 the sum of all matter components.

A central task in cosmology is to measure the parameters occuring in
the Friedmann equation in eq. 34 and hence determine the composition
of the universe.
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Many of these components have been measured from the CMB: the
COBE and Planck satellites measured the temperature of the universe
at the time of the photons decoupling, and also the temperature fluc-
tuations.

To be able to use these results we need to know the dependence of
the energy density with temperature, so first we need to study thermal
equilibrium in an expanding universe.

(a) Newtonian derivation of the Friedmann equation
Some intuiton of the form of the Friedmann equation can be de-
velopted from a nonrelativitsic Newtonian analysis. Consider an
expanding sphere of matter of uniform mass density ρ(t) and ra-
dius R(t) = a(t)R0, and let’s study the dynamics of a test particle
on the surface of the sphere. The acceleration of the particle is

R̈ = −GM(R)

R2
, M(R) =

4π

3
R3ρ. (36)

Note that the mass enclosed in the sphere M(R) is constant.
Multiplying this by Ṙ,

ṘR̈ = −GM(R)
Ṙ

R2
=⇒ d

dt
(Ṙ)2 = GM(R)

d

dt

(
1

R

)
(37)

and integrating, we get

1

2
Ṙ2 − GM(R)

R
= E (38)

where the first term is a kinetic term per unit mass and the second
term a potential term per unit mass; therefore, the integration
constant E is the energy per unit mass of the particle. In terms
of the scale factor and the density, this becomes(

ȧ

a

)2

=
8πG

3
ρ+

2E

a2R2
0

(39)

which is the form of the Friedmann equation of eq. 31 if we
identify 2E with −kc2.
This example describes the evolution of a particle in a sphere of
mass M(R). However, the Friedmann equations above describe
the evolution of spacetime itself: the spatial curvature would then
be related to the total energy of the spacetime region, with flatness
arising if the kinetic and potential energies precisely add up to
zero.
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(b) Complete Friedmann equation
Adding the cosmological constant, the Friedmann equation be-
comes (

ȧ

a

)2

=
8πG

3
ρ− kc2

a2R2
0

+
Λc2

3
(40)

where ρ is the total energy density of the universe.

1.3 The Hot Big Bang and thermal equilibrium

The blackbody spectrum of the CMB indicates that the early universe was in
thermal equilibrium, consisting of a hot gas of weakly interacting particles.
One cannot describe the hot gas by the positions and velocities of each
particle, so we will need to characterize the properties of the gas statistically.

1.3.1 Density of states

A key concept in statistical mechanics is the probability that a particle chosen
at random has momentum ~p. The probability distribution function f(~p, t)
can be very complicated, but if we wait long enough compared to the typical
interaction timescale the system will reach equilibrium and is characterized
by a time-independent distribution function, where the gas has reached a
state of maxium entropy:

f(p, T ) =
1

e(E(p)−µ)/T ± 1
(41)

Here the + sign is for fermions and the − sign for bosons.
In a region of “volume” d3xd3p there can be a number of phase space

elements d3xd3p/(2π~)3, since by Heisenberg’s principle no particle can be
localized into a region of phase space smaller than (2π~)3. Then, the average
number of particles per unit of phase space can be seen as

dN

d3xd3p
=

g

(2π)3
f(p, T ) (42)

with N the total number of particles, g the number of degrees of freedom of
the particle species in particular and we have set ~ = 1. Integrating over p
gives the number density n(T ),

n(T ) =
g

(2π)3

∫
d3p f(p, T ) (43)

12



If we didn’t have f(p, T ) the result would be g Vph
(2π)3

, i.e. the total phase
space volume Vph divided by the volume of one state, which yields the total
number of states in phase space. Therefore, this integral gives the weighted
average value of states of the particle, per volume (it’s a density).

Also, the energy density and preassure of the gas are given by

ρ(T ) =
g

(2π)3

∫
d3p f(p, T )E(p) , (44)

P (T ) =
g

(2π)3

∫
d3p f(p, T )

p2

3E(p)
(45)

Each particle species has its own distribution function fi, and therefore
its own density and pressure ni, ρi and Pi. Species that are in thermal
equilibrium share a common temperature, Ti = T , so their densities and
preassures can then only differ because of differentces in their masses and
chemical pontentials.

1.3.2 The Primordial Plasma

We want to relate the densities and pressures of the different species in the
primordial plasma to the overall temperature of the universe.

Setting the chemical potential to zero and using E(p) =
√
p2 +m2 one

gets

n =
g

2π2

∫ ∞
0

dp
p2

exp
[√

p2 +m2/T
]
± 1

(46)

ρ =
g

2π2

∫ ∞
0

dp
p2
√
p2 +m2

exp
[√

p2 +m2/T
]
± 1

(47)

and defining the dimensionless variables x ≡ m/T and ξ ≡ p/T ,

n =
g

2π2
T 3I±(x), I±(x) ≡

∫ ∞
0

dξ
ξ2

exp
[√

ξ2 + x2
]
± 1

(48)

ρ =
g

2π2
T 4J±(x), J±(x) ≡

∫ ∞
0

dξ
ξ2
√
ξ2 + x2

exp
[√

ξ2 + x2
]
± 1

(49)

Where the functions I±(x) and J±(x) need to be evaluated numerically in
general. But can be determined analytically in the relativistic and non-
relativistic limits.
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1. Relativistic limit

Taking the limit x→ 0 the integral reduces to

I±(0) =

∫ ∞
0

dξ
ξ2

eξ ± 1
. (50)

Taylor expanding the integrand one can find

I+(0) =
3

4
I−(0), I− = 2ζ(3) (51)

and therefore

n =
ζ(3)

π2
gT 3

{
1 bosons
3
4 fermions

(52)

One can also show that

J+(0) =
7

8
J−(0), J−(0) = 6ζ(4) (53)

and therefore

ρ =
π2

30
gT 4

{
1 bosons
7
8 fermions

(54)

So given the temperature of a relativistic particle species we also know
its number and energy density.

2. Non-relativistic limit

Taking the limit x � 1 for tempratures below the particle mass the
integral becomes the same for fermions and bosons,

I±(x) ≈
∫ ∞

0
dξ

ξ2

e
√
ξ2+x2

(55)

One can Taylor expand the square root to first order and perform the
remaining Gaussian integral to find

I±(x) =

√
π

2
x3/2e−x (56)
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and comparing with the relativistic case x = 0,

I±(x)

I−(0)
≈ 0.5x3/2e−x � 1 (57)

meaning that massive particles are exponentially rare at low tempera-
tures.

The density of the non-relativistic gas as a function of temperature is

n = g

(
mT

2π

)3/2

e−m/T (58)

The energy density assuming E(p) =
√
m2 + p2 ≈ m+ p2/2m is

ρ ≈ mn+
3

2
nT (59)

and one can show that the pressure is

P = nT (60)

which is nothing but the ideal gas law, PV = NkBT . Since T � m,
we have P � ρ, so that the gas acts like pressureless dust (“matter”).

By comparing the relativistic and non-relativistic limit one sees that
the number density, energy density and pressure of a particle species
fall exponentially (are “Boltzmann suppressed”) as the temperature
drops below the mass of the particles. This can be interpreted as the
annihilation of particles and anti-particles.

1.3.3 Energy density as a function of temperature

The total energy density ρ of the early universe is the sum over all contribu-
tions of species

ρ =
∑
i

gi
2π2

T 4
i J±(xi) (61)

where the contribution of species i was derived in eq. 48. In general dif-
ferent species can have different temperatures Ti, but this is only relevant
for neutrinos after electron-positron annihilation. It is common to define a
“temperature of the universe” T so that

ρuniverse(T ) ≡ π2

30
g∗(T )T 4 (62)

15



with the effective number of degrees of freedom

g∗(T ) ≡
∑
i

gi

(
Ti
T

)4 J±(xi)

J−(0)
(63)

Since as we have seen the energy density of relativistic species is much greater
than that of non-relativistic species, one usually only includes the relativistic
species in g∗ and, using Ti � mi =⇒ x ≈ 0 and the results of J±(0) of eq.
53, it reduces to

g∗(T ) ≡
∑
i=b

gi

(
Ti
T

)4

+
7

8

∑
i=f

gi

(
Ti
T

)4

(64)

If all particles are in equilibrium at a common temperature T , determining
g∗(T ) is simply summing over the different particles of the Standard Model
which are relativistic at temperature T .

Considering a flat universe (k = 0) one can use the Friedmann equation
of eq. 31 to relate the expansion history of the universe to its temperature
in a radiation-dominated era,

H2 =
ρ

3M2
Pl
' π2

90
g∗

T 4

M2
Pl

(65)

with MPl ≡
√
~c/(8πG) = 2.4× 1018 GeV.

1. Evolution of g∗(T )
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At T & 100 GeV, all particles of the Standard Model were relativistic.

• gγ = 2, for the two polarization transverse to the direction of
propagation.

• A massive particle of spin s has g = 2s+ 1 polarization states.
• gW±,Z = 3 and a total of 3× 3 degrees of freedom.
• Gluons are massless, so gg = 2, but there are 8 of them, so 8× 2

dof.
• Fermions have s = 1/2 and contribute with 2 spin states.
• Charged leptons (e±, µ±, τ±) contribute 3× 2× 2 = 12.
• Quarks (t, b, c, s, d, u) have 3 different colors, so 6×2×3×2 = 72.
• Neutrinos, whether Dirac or Majorana, contribute with 1 internal

degree of freedom.

Adding up the internal degrees of freedom,

gb = 28, gf = 90 =⇒ g∗ = gb +
7

8
gf = 106.75 (66)

when all species were relativistic with common temperature T . As
temperature drops and particle species become non-relativistic, one
estimates g∗ by counting just the relativistic degrees of freedom with
m� T and discarding the rest.

• Top quarks annihilate first, so at T ∼ 1
6mt ∼ 30 GeV we have

g∗ = 96.25.
• Higghs boson and W± and Z annihilate next and at T ∼ 10 GeV

we have g∗ = 86.25.
• The bottom quarks annihilate (75.75) followed by the tau leptons

(61.75).
• Before strange quarks annihilate matter undergoes the QCD phase

transition. At T ∼ 150 MeV quarks combine into baryons and
mesons: although there are many different species of them, all
except the pions (π±, π0) are non-relativitstic below the temper-
ature of the QCD phase transition and are Boltzmann suppressed,
so we only have pions, electrons, muons, neutrinos and photons
as relativistic. The three types of pions are spin-0 bosons, which
carry a total of g = 3 internal degrees of freedom, so we have
g∗ = 17.25.
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• After the QCD transition, the muons and pions annihilate leading
to g∗ = 10.75.

• Finally, electrons and positrons will annihilate.

1.3.4 Entropy and expansion history

To describe the evolution of the universe it is useful to track a conserved
quantity, and entropy is more informative than energy. The total entropy
of the universe only increases or stays constant (2nd law of thermodynamics).
We will show that entropy is conserved in equilibrium.

1. Conservation of entropy

Assuming chemical potentials small, the first law of thermodynamics
reads

TdS = dU + pdV (67)

defining the entropy density s ≡ S/V and noting that s and ρ do not
depend on the volume V , one can write

(Ts− ρ− P ) dV + V

(
T
ds

dT
− dρ

dT

)
dT = 0 (68)

where the two brackets have to vanish separately for arbitrary varia-
tions dV and dT . The vanishing of the first bracket implies

s =
ρ+ P

T
(69)

and the second bracket enforces

ds

dT
=

1

T

dρ

dT
⇐⇒ d(sa3)

dt
= 0 (70)

where we have used the continuity equation dρ/dt = −3H(ρ + P ) =
−3HTs. This equation means that the total entropy is conserved in
equilibrium and that the density evolves as s ∝ a−3.

If we have chemical potential, we would have

s =
ρ+ P − µn

T
,

d(sa3)

dt
= −µ

T

d(na3)

ddt
(71)

so entropy is conserved either if the chemical potential is small, µ� T ,
or if no particles are created or destroyed.
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2. Relativistic species

For a collection of different relativistic species, the total entropy density
is

s =
∑
i

ρi + Pi
Ti

≡ 2π2

45
g∗S(T )T 3 (72)

where we have used Pi = 1
3ρi and the relativistic expression for the

density in eq. 54 to define the “effective number of degrees of freedom
in entropy” g∗S . If we are away from mass thresholds,

g∗S(T ) ≈
∑
i=b

gi

(
Ti
T

)3

+
7

8

∑
i=f

gi

(
Ti
T

)3

(73)

When all species are in equilibrium with Ti = T then g∗S = g∗. In our
universe this is the case until t ≈ 1 s.

A consequence of entropy conservation is that

g∗S(T )T 3a3 = const or T ∝ g−1/3
∗S a−1 (74)

Away from mass thresholds, g∗S is approximately constant and the
temperature scales as T ∝ a−1. But when a particle species becomes
non-relativistic and disappears, its entropy is transferred to the other
relativistic species still present in the thermal plasma, acusing T to
decrease slightly more slowly than a−1.

3. Temperature of neutrinos

Neutrinos decoupled from the thermal plasma because its interaction
became smaller then the Hubble rate,

Γ < H (75)

Shortly after neutrinos decoupled, the temperature dropped below the
electron mass, so electrons and positrons became non-relativistic. In
this process the photons in the plasma were “heated” due to entropy
conservation (their temperature decreased more slowly, see eq. 74), but
neutrinos were not because they already decoupled from the plasma.

Before and after electron decoupling, we have

g∗S =

{
2 + 7

8 × 4 = 11
2 T & me

2 T < me

(76)
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Enforcing g∗S(aTγ)3 to remain constant, aTγ increases by a factor
(11/4)1/3 after electron-positron annihilation, while aTν remains con-
stant. This means that the neutrino temperature is slightly lower than
the photon temperature,

Tν =

(
4

11

)1/3

Tγ (77)

relation which holds until the present.

1.4 Measurements from our Universe

1.4.1 From CMB temperature: photon and neutrino relic densi-
ties

The COBE satellite found the tempreature of the CMB blackbody spec-
trum to be

T0 = (2.7260± 0.0013) K (78)

Using eqs. 52 and 54 we can relate this temperature to the number density
and energy density of the relic photons,

nγ,0 = 0.24×
(
kBT0

~

)3

≈ 410 photons cm−3 (79)

ργ,0 = 0.66× (kBT0)4

(~c)3
≈ 4.6× 10−34 g cm−3 (80)
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In terms of the critical density, the energy density of the photons is

Ωγ ≈ 5.35× 10−5 (81)

The universe is also filled with a background of relic neutrinos and their
energy density is 68% of the relic photons (due to eq. 77), yielding a total
radiation energy of

Ωr = 8.99× 10−5 (82)

1.4.2 From CMB temperature fluctuations: curvature and DM
relic densities

The COBE satellite also discovered that the CMB temperature varies
with position on the sky with fluctuations ∆T/T ∼ 10−5. The plot below
shows the two-point correlation function of the CMB temperature fluctua-
tions:

The positions of the peaks depend on the spatial curvature of the uni-
verse, which depend on the cosmological model. The measurements suggest
an upper bound for any amount of spatial curvature

|Ωk| < 0.005 (83)

which constrains the curvature to be less than 1%. Since the curvature
contribution scales as a−2 while matter and radiation scale as a−3 and a−4,
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it is believed that effects of curvature were completely negligible at earlier
times.

The pattern of CMB fluctuations depends sensitively on the amount of
dark matter, and the inferred dark matter density today is

Ωc ≈ 0.27 (84)

where the subscript (c) indicates that we are assuming a “cold” form of dark
matter with equation of state wc ≈ 0.

1.4.3 From BBN and CMB: baryon number bayon relic densities

Since s ∝ a−3, the number of particles in a comoving volume is proportional
to the number density ni divided by the entropy density,

Ni ≡
ni
s

(85)

If particles are not produced nor destroyed then ni ∝ a−3 and Ni is a con-
stant. An important example is the total baryon number after baryogenesis,

nB
s
≡ nb − nb̄

s
(86)

and the related baryon-to-photon ratio

η ≡ nB
nγ

= 1.8g∗S
nB
s

(87)

which after electron-positron annihilation becomes a conserved quantity,
η ≈ 7nB/s, and is therefore a useful measure of the baryon content of the
universe.

Both Big Bang Nucleosynthesis (BBN) and the CMB observations show
that baryons only make up 5% of the critical density,

Ωb ≈ 0.05 (88)

1.4.4 From supernovae luminosities: dark energy relic density

Assuming a flat universe (as suggested by the CMB observations), the data
from distant supernovae luminosities can only be fit if the universe contains
a significant amount of dark energy,

ΩΛ ≈ 0.68. (89)
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